
MYSTERIES OF BUFFER OPTIMIZATION SOLVED!
By Bill Hitefield, Dino-Software

In some respects, IBM’s access methods (especially VSAM) are like software black boxes – you
pass a request to them, they go off into the Enchanted Forest, and sometime later, data is either
retrieved or written by your application. As application developers, we have some modicum of
control over when, why, and how often we make requests to the access method. It is that second
part of the process, the “sometime later,” that we view as a part of application performance that
we seemingly have no means of influencing.

For most applications, if the “sometime later” variable were lessened, the aggregate overhead
experienced by an application would decrease.

The access method and buffers
When the access method processes the data set on behalf of the application, it builds a
buffering environment. Think of buffers as “temporary housing” for data records. The access
method uses this temporary housing as a staging area for the data until it is needed for the
program.

As application owners, we know how our
application accesses the data (sequentially,
randomly, or some combination). If we
combine that knowledge with knowledge
of how the access method avails itself of
the buffers in each of those access types,
then we can define a unique buffering
environment for each data set accessed by
our application, and thus ensure optimal
performance by the access method.

Many people already do this. There are
multiple sources that make that correlation
(for example, IBM’s “VSAM Demystified,”
Redbooks SG24-6105). Those sources allow
them to determine the needed buffering
environment and then make the needed
alterations to their system (JCL, …) to define
that specific environment.

Improvements in application execution time can be quite dramatic. In some instances, over 90%
of the EXCP SVCs issued against a data set are not just optimized, they are eliminated. This can
result in tremendous savings.

This sounds like something that everybody should be doing, doesn’t it? If so, then why don’t
they?

For an IT site, the task does not end with that one set of definitions. Applications change over

APPLICATION

BUFFERS

VSAM

ACCESS

METHOD

time, data sets change over time, and the access pattern that the application uses changes over
time. In their due diligence, the site then must periodically monitor those definitions to ensure
that they are current and that they in fact provide the needed relief.

The manpower and time required to initially perform this task and then monitor the results
quickly becomes something that is not insignificant. This causes most sites to lose heart in this
ongoing contest with the access method. A good buffer optimizer such as VELOCI-Raptor can
virtually eliminate this concern.

The buffer optimizer’s place in the process
This is where a buffer optimization product, such as VELOCI-Raptor (also known as VR), performs
its magic. When an application opens a data set, VR will combine its knowledge of access
method behavior, the access declarations made by the application, along with the current status
of the data set (number of records, CI-size, and so forth), and will determine the best buffering
environment for that particular access to the data set.

Since all of this information is used each time the data set is opened, there is no need to have an
ongoing task to monitor the performance definitions that were (without the buffer optimization
product) entered manually.

The buffering product does what a performance specialist could have done and does it
automatically each time a data set is opened, for every application, day or night, over and over,
even on weekends. The manpower constraint facing most sites is now no longer a concern.

Going deeper - the buffer optimizer and IBM’s buffering schemes
IBM allows for the use of different buffering technologies. The default is NSR – Non-Shared
Resources. While this buffering scheme excels in sequential access to a data set, it seems to
merely tolerate random access. IBM also offers LSR – Local Shared Resources. This buffering
scheme is pretty much the opposite of NSR in how it responds to applications. It excels in
random access to a data set, and it tolerates sequential access.

For a performance specialist to implement LSR, the approach is not quite as straightforward
as the process described earlier. The implementation of LSR requires more internal knowledge
of the application. LSR has certain expectations and requirements that must be met by the
requestor of its services. For all of its beauty in easily processing random requests, LSR is fairly
stringent in its implementation.

In their implementation of LSR, this means that the performance specialist must be diligent not
only in selecting the proper applications but also in making the needed changes to implement
the use of LSR for an application.

Buffering products like VELOCI-Raptor are designed to do just that. When the data set is
opened, they will determine whether the optimal scheme is NSR or LSR. If LSR is selected,
VELOCI-Raptor will provide the necessary interface to ensure that the application abides by the
restrictions set by LSR itself.

VELOCI-Raptor then extends this support by determining whether or not the application abides
by its own declared intentions. For example, the application may declare “ACCESS IS RANDOM”
when the data set is opened, yet it may process the data set sequentially. If so, the buffering

strategy defined either by the performance specialist or by the buffering product is no longer
optimal. VELOCI-Raptor monitors that application’s access and can determine when a different
buffering scheme may have been more beneficial – and then implement that buffering scheme.

A final consideration – communicating with the buffer optimizer
For a site to make effective use of any buffer optimization solution, it must be able to
communicate its wishes to the chosen solution. What candidates are to be selected? Once
selected, what is to be done with them?

Communication with any buffering solution can be broken down into several levels of user
involvement as follows:

1. Low-level
Some solutions require guidance at a very low level, resulting in a high level of input from the
user. Not only must the user identify the candidates for optimization, they must also define (and
monitor) the type of optimization that is to be performed. At this level, the buffering solution
does not make that determination.

An example of this would be the use of JCL parameters to implement a rudimentary buffering
solution. The user must not only select which candidates are to be processed, they must also
implement that selection in each place that candidate is referenced.

While this method may get the job done, it requires a great deal of effort and sophistication on
the part of the user.

2. Mid-level
Solutions at this level require the same sort of definitions (i.e., identification of the candidates
and a selection of the optimization type) but require them to be issued only once. The buffering
product will then apply the requested actions each time the candidate data set is accessed.

Some buffering solutions may allow you to define buffering options that can be associated with
various criteria. You can specify a specific option that is to be used for a certain data set, or you
can specify a solution that is to globally apply to a selected storage class.

While this is an improvement over the previous level, the user still must make a determination as
to which buffering solution is to be implemented.

3. High-level
At this highest level, the best of all features is uniquely embodied within VELOCI-Raptor. VR
exclusively provides:
• The user’s only involvement is simply the identification of candidates.
• The product is able, in and of itself, to determine the optimal buffering solution based upon

real-time criteria 24/7/365.

At this level, users only need to concern themselves with the “what” of their activities, not the
“how.” This removes a tremendous workload from the user.

4. Conclusion
In literature lore, most mysteries end with “the butler did it.” In the mystery of buffer

optimization, the answer is “the buffering product did it.” A good buffering product does what a
performance specialist can do, but does it automatically – and does it all the time.

VELOCI-Raptor was designed with the premise that an application is not static for long.
Something will change, and that something will impact performance. VR is uniquely prepared
for that, will detect it, and will make the needed adjustments to the optimal buffering scheme.

VELOCI-Raptor has a mantra – “The fastest I/O is the one you do not have to issue.” Its goal is to
provide a buffering scheme such that a majority of application I/O requests can be satisfied via
“temporary housing” – the buffers.

When considering a buffering product, think about the following:
• The product should have a realistic and intelligent approach to buffer optimization. It should

avail itself of all possible solutions and not limit itself to any particular one.
• The product should automatically respond to dynamics in your operating environment. You

should not have to monitor its selections.
• All the product should require of you is the identification of candidates. It should be

sophisticated enough to determine the optimal solution on its own.

I hope that by now the mystery of the “buffer optimizer” has been removed and we now have
a clear picture of the need for something that will help us optimize the buffering environment
in which VSAM works with our applications. Our understanding of the role of a buffer optimizer
now helps us determine whether or not one is right for us. We also have some new insight as to
how to differentiate the good optimizers from the ordinary.

Is a buffer optimizer right for you? I would offer that there is a high probability that you should
consider one. If so, I would suggest that you give VELOCI-Raptor a good look. You will be happy
you did. No mystery involved.

http://www.velociraptordinosoftware.com
http://www.velociraptordinosoftware.com
http://www.velociraptordinosoftware.com

